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ABSTRACT
A multi-agent VRP solver is presented in this paper. It
utilizes the contract-net protocol based allocation and sev-
eral improvement strategies. It provides the solution with
the quality of 81% compared to the optimal solution on 115
benchmark instances in polynomial time. The self-organizing
capability of the system successfully minimizes the number
of vehicles used. The presented solver architecture supports
great runtime parallelization with incremental increase of
solution quality. The presented solver demonstrates appli-
cability to the VRP problem and easy adaptation to problem
variants.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
tificial Intelligence—Intelligent agents, Multiagent systems

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Vehicle routing problem, heuristic, multi-agent solver, bench-
marks

1. INTRODUCTION
The Vehicle Routing Problem (VRP) is a well-known opti-

mization problem introduced in [3]. The problem is defined
as routing of a fleet of gasoline delivery trucks between a
terminal and a number of service stations. The trucks have
load capacity limitations and deliveries have to be accom-
plished at minimum total cost (distance traveled).

This paper presents an agent-based solver producing fea-
sible solution of the VRP instance in a polynomial time that
doesn’t use exhaustive searches or randomizing methods.
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1.1 Problem Statement
The VRP falls into the category of the NP-hard problems

and so it is difficult to solve it in reasonable time. It is
based on interdigitation of two underlaying problems that
are also NP-hard – the Multiple Traveling Salesman Prob-
lem (MTSP) and Bin Packing Problem (BPP). A feasible
solution to the VRP is a solution of MTSP that satisfies
the capacity constraints (decision variant of BPP). By re-
laxation of one of the underlying problems (MTSP, BPP
respectively), we can transform VRP into the other sub-
problem (BPP, MTSP respectively).

The Vehicle Routing Problem can be formalized as:

Definition 1. Let us have a set of cities c1, . . . , ck with
known mutual distances and positive demands d1, . . . , dk,
the Vehicle Routing The problem is to find a set of m tours
that together visit all nodes, each node is visited exactly once
and by only one tour, the sum of the tours is minimal and
the sum of the node demands served by each tour doesn’t
exceed the vehicle capacity C.

We define the set of tasks T = {n1, ..., nk}, where ni is a
doublet of a city and the corresponding demand:

ni = (ci, di), (1)

∀i∀j : ci �= cj iff i �= j.

The vehicle capacity constrain is defined for each route as:

lX
i=1

di ≤ C, (2)

where l is a number of tasks in the route and di is the de-
mand of ith task of the route. For ensuring feasibility of the
solution we require:

∀i : di ≤ C. (3)

It is obvious that for di > C, there is no way to handle
this demand by a single truck and thus no solution for the
problem exists.

In practical applications, the VRP is defined either with
a fixed number of vehicles or as a problem with a minimal
number of vehicles demanded. The determination of the
minimal number of vehicles is a decision variant of BPP and
is related also to determining the minimal number of routes
for MTSP. Even though this problem is NP-hard, we can
easily define the lower and upper bound of the number of
vehicles (routes):
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Theorem 1. The number of vehicles m in the feasible
solution of the Vehicle Routing Problem is bounded byPk

i=1 di

C
≤ m ≤ k

where k is the number of cities, C is the capacity of the
vehicle, and di is a demand of the ith city.

Proof. The lower bound of the number of vehicles re-
spects the capacity constraints stated in Definition 1. For
m vehicles the cumulative capacity of the whole fleet is m×C
and the cumulative size of the demand is

mX
j=1

lX
i=1

d′
i,j =

kX
i=1

di,

where d′
i,j is a demand of the ith city on the jth route. Re-

specting Equation 2 the cumulative size of the demands in
the feasible solution cannot exceed the cumulative capacity
of the fleet. The upper bound is given by Equation 3 in the
case where every demand is served by one route, i.e. l = 1
and m = k.

1.2 Existing Solution Techniques
In the original Dantzig’s article [3] the problem is for-

mulated as a linear program providing a near-optimal solu-
tion. Classical solution techniques include wide variety of
exact methods (branch and bound, branch and cut, set cov-
ering, spanning tree, shortest path relaxation, etc.), heuris-
tics (constructive, two-phase, improvement, etc.), and meta-
heuristics (simulated annealing, tabu search, genetic algo-
rithms, ant algorithms, neural networks, etc.). More infor-
mation about solution techniques can be found for example
in [6], [7], or [9]. This paper focuses on k-VRP (k is the
number of cities), which is proven to be NP-hard and the
best known approximation of the k-VRP is 5

2
− 3

2n
for the

metric case (triangle inequality is satisfied) [5].
The Agent-based approach to a variant of the VRP solver

has been presented for example in [10]. Authors use three
types of agents – Client, Bidder and Vehicle agents. The
approach is based on the contract-net protocol (CNP) allo-
cation and optimization based on exchange of tasks between
the Vehicle Agents. The Vehicle Agents use an insertion
heuristic and improvement strategy for task swapping be-
tween them. The error of the solution (compared to the
optimal solution) presented in the paper is 4–29%.

A similar approach has been used in [1] for a dynamic vari-
ant of k-VRP (new tasks are added during the execution),
where the initial allocation is generated using a centralized
algorithm. The dynamic task allocation is made by the
CNP protocol. Then two improvement phases are applied.
The intra-route optimization is applied to each agent route
and inter-route optimization is performed between Vehicle
Agents (1 or 2 random tasks are moved between agents).
The optimization is performed continuously during vehicle
rides until all tasks have been fulfilled or a new dynamic
task comes (1 hour interval in the experiments). The er-
ror of solution on all static requests has been reached 0–8%,
but it is not described how much computation time has been
used for static instances and also there is no discussion of
stability and the speed of convergence of the solution qual-
ity (the optimization algorithm terminating condition is not
defined).

In both [10] and [1] there is no discussion of the number
of Vehicle Agents and handling of the potential allocation
failure because of capacity constrains (no Vehicle Agent is
capable of undertaking the next task) which can arise when
the number of Vehicle Agents is lower than the upper bound
defined by Theorem 1.

2. MULTI-AGENT SOLVER
The multi-agent planning approaches are used for solving

a wide variety of planning problems. As analyzed in [2] the
multi-agent planning techniques can be beneficial for such
problems where the domain sizes of individual agents are
considerably smaller (e.g. in logarithmic relation) than the
overall size of the problem (even if the planning complexity
of individual agent is exponential) and the number of depen-
dencies between agents is low. Although the Vehicle Routing
Problem consists of several NP-hard problems which may
not satisfy the presented conditions (e.g. the BPP part pro-
duces an agent domain comparable to the overall problem
size for the agent maintaining task distribution), this pa-
per shows the applicability of the agent-based approach and
discusses it’s benefits and limitations.

2.1 Architecture
In this section we introduce the polynomial agent-based

Vehicle Routing Problem solver producing a feasible solu-
tion, according to Definition 1, minimizing the routes’ cost
and the number of vehicles used. The solver is composed of
three types of agents (see Figure 1). They are

• Task Agent for processing of demands and allocation
invocation,

• Allocation Agent for maintaining allocation and the
improvement process, and

• Vehicle Agent for route planning and optimization.

The multi-agent solver is composed of one Task Agent, one
Planning Agent and a set V of Vehicle Agents (each agent
utilizes one of the strategies described below). The number
of Vehicle Agents respecting Theorem 1 is constrained by
the lower and upper bound.

Since the agent-based solver doesn’t use the exact method
for solving the BPP part of the problem it may be impossible
to find a solution using a minimal number of vehicles. In
such a case, the whole process has to be restarted with an
increased number of Vehicle Agents or an agent has to be
added during the solving process. On the other hand, the
upper bound of the number of Vehicle Agents guarantees
the feasibility of solution but may produce worse results.
Thanks to the agent paradigms, we can expect some sort
of self-organizing behavior that emerges during the process
of solution improvement. Let us formulate the following
hypothesis:

Hypothesis 1. The implicit self-organizing ability of the
agents emerges to the solution that corresponds to the min-
imal number of vehicles. The solutions produced by the sys-
tem converge to the same number of vehicles regardless of the
initial number of Vehicle Agents (provided that the solution
is found).

To solve the given VRP instance, we generate a set of
solvers utilizing a different combination of strategies and
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Figure 1: Generic architecture of agent-based VRP
solver.

processing an input instance in parallel. The solvers pro-
duce solutions of the given problem independently and then
the solutions are aggregated by the Composite Solver which
selects the best one that minimizes the cost of the solution:

cost = min
S

cost(S), (4)

where S is a solution provided by a solver and cost(S) is
the cost of the solution (see Equations 5 and 8). From the
strategies described in the next subsections, we have built 42
solvers competing to answer the fundamental VRP question.

2.2 Task Agent
The Task Agent is responsible for collecting the demands

and passing them to the Allocation Agent. It optionally
applies the ordering preprocessing to the set of incoming
tasks. It is able to pass the tasks to the Allocation Agent
one by one (this represents the dynamic variant of VRP) or
in a batch.

We suppose the ordering of the tasks directly influences
the BPP part of the VRP. In the case of wrong ordering, the
VRP solution may not be feasible for the lower bound of the
number of Vehicle Agents because of capacity constraints
(Equation 2). In the case of correct ordering, there may
be a bigger chance to optimally allocate the tasks to the
Vehicle Agents. These assumptions lead us to formulate the
following hypothesis:

Hypothesis 2. Applying appropriate ordering to a set of
tasks, the chance of finding the solution of VRP with a min-
imal number of vehicles is increased and the cost of the so-
lution is decreased.

Since the number of possible orderings increases rapidly
with the size of the task set, we are not able to investigate all
the orderings (in fact, the complexity of such an exhaustive
search is comparable to solving the VRP itself). The First
Fit Decreasing (FFD) heuristics is a classical BPP algorithm
that has been recently proved [4] to provide the tight bound
of 11

9
OPT + 6

9
(e.g. when the instance of BPP can be opti-

mally solved with 6 bins, the FDD is able to solve it with the
maximum of 8 bins). Since it is a good algorithm for BPP,
we decided to build the strategy of Task Agent inspired by

this algorithm. The Task Agent strategy doesn’t directly
affect the allocation of the tasks to the Vehicle Agents, but
it may have strong influence on the Allocation Agent strat-
egy efficiency because of ordering capability. To inspect the
influence of the Task Agent strategy, we have created also
an opposite strategy to FFD for comparison.

The Task Agent uses the following three ordering strate-
gies:

1. Most Demand First (MDF) based on the FFD, where
the tasks are ordered with decreasing demands,

2. Least Demand First (LDF), which is opposite to
MDF, so the tasks are ordered with increasing de-
mands,

3. First In First Out (FIFO), where tasks are not or-
dered and their sequence corresponds to the time of
arrival.

The time complexity of the Task Agent preprocessing (MDF
and LDF strategies) corresponds to the complexity of stan-
dard sorting algorithms, which is O(nlog(n)). The complex-
ity of the FIFO strategy is O(1). Therefore the complexity
of the Task Agent algorithm is OTA = O(nlog(n)).

The task processing (passing them to the Allocation Agent)
can be handled by one of two strategies:

1. Batch processing (NORM), where all available tasks
are sent as one batch, and

2. Iterative processing (ITER), where task are sent
one by one.

2.3 Allocation Agent
The Allocation Agent applies a defined strategy to allo-

cate the tasks to the set of Vehicle Agents. The allocation
strategy searches for the best suitable mapping of the tasks
to the Vehicle Agents that minimizes the overall cost. The
goal of Allocation Agent is to find such a partition P of the
set of all tasks T that

argmin
P

vX
i=1

cost(Ni), (5)

where v is a number of Vehicle Agents, Ni is a subset of
tasks allocated to the ith Vehicle Agent, cost(Ni) is a cost
function computed by the ith Vehicle Agent (Equation 8),
and Ni ⊆ T,

Sv
i=1 Ni = T where ∀i, j : Ni∩Nj = ∅ iff i �= j.

Equation 5 conforms to Definition 1, where Equation 2 is
covered by Vehicle Agents.

The Allocation Agent algorithm consists of two phases:
(i) allocation phase and (ii) improvement phase.

The first phase builds a feasible solution and the second
performs incremental improvement. Both phases are cap-
tured by Algorithm 1.

Two allocation strategies implemented by the Allocation
Agent are:

1. Contract-net based (CNP) – is based on the well-
known contract-net protocol. For every task the best
Vehicle Agent is selected according to insertion esti-
mation (see Section 2.4) satisfying capacity constrains
(Equation 2). This strategy contains no backtrack-
ing and in case of allocation failure (because of ca-
pacity constraint of Vehicle Agents) the whole process
is restarted with a higher number of Vehicle Agents.
This strategy is described by Algorithm 2.
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2. Capacity backtracking strategy (BC) – is based on
the previous strategy, but with backtracking in case
of allocation failure. In case when no Vehicle Agent
can undertake a new task because of the capacity con-
straint, the best Vehicle Agent is selected regardless
of capacity limitations. This agent removes the worst
tasks until the new task fits the increased free space.
After that, the removed tasks are allocated again. The
reallocation counter controls the number of realloca-
tions and when it reaches the pre-defined maximum,
the number of Vehicle Agents is increased and the pro-
cess is restarted. This strategy is described by Algo-
rithm 3.

The CNP strategy can fail because of capacity constrains

and can be restarted up-to k−
Pk

i=1 di

C
times when the num-

ber of Vehicle Agents reaches upper bound (see Theorem 1).
The BC strategy can provide feasible allocation with a

lower number of Vehicle Agents because of backtracking,
but also can be trapped in an infinite reallocation loop. The
reallocation counter helps to recover from this loop. In the
worst case, the strategy is being restarted until the num-
ber of Vehicle Agents reaches the upper-bound and the BC
provides the same result as CNP.

After successful allocation, the improvement phase takes
place. We have designed three improvement strategies that
Allocation Agent can use. The strategies are improvement
heuristics that produce the same or better solution after each
run. In all cases, the strategy is repetitively executed on all
vehicle Agents until the solution overall cost (see Equation 5)
stops improving (see Algorithm 1).

The improvement strategies are (see Algorithm 4 for more
details):

• Delegate worst (DW) – each Vehicle Agent identifies
it’s worst task and tries to delegate it to another agent
if the savings are higher than the insertion cost (see
Equations 10 and 9).

• Delegate all (DA) – each Vehicle Agent delegates all
its tasks (only if the savings are higher than the inser-
tion cost).

• Reallocate all (RA) – each Vehicle Agent successively
removes all its tasks from the plan and allocates it
again using the CNP strategy. The result of the allo-
cation can be the same as before task removing, or a
change of the position of the task in the current agent
plan, or delegation to another agent.

The results produced by the two-phase algorithm are in-
fluenced by the Task Agent processing strategy. The NORM
strategy allows to allocate all tasks and then perform the im-
provement phase. The ITER strategy provides a high degree
of dynamism where tasks are allocated one by one and the
optimization is performed after allocation of each task.

The worst-case time complexity of the Allocation Agent
algorithm is

OAA = n × Oalloc + n2 × m × Oimpr, (6)

where n is the number of tasks, m is the number of agents,
Oalloc is the complexity of the allocation strategy, and Oimpr

is the complexity of the improvement strategy. The com-
plexity of individual strategies is shown in Table 1 where rc
is the reallocation counter threshold (constant) and OestI ,

Algorithm 1 The Allocation Agent main algorithm.

function solve(T , V ) begin
forall t : T begin

run allocation strategy for task t
if allocation not successful then

restart solver with increased
number of Vehicle Agents

end
end
improvement := true
repeat until improvement is false

improvement := false
forall v : V begin

run improvement strategy for agent v
if solution has been improved then

improvement := true
end

end
end

end

Algorithm 2 Contract-net based allocation strategy.

function allocateCNP(t, V ) begin
forall v : V begin

find winner with the lowest insertion
estimation of t not exceeding capacity C

end
if winner is found then

assign t to the winner
else

allocation not successful
end

end

Algorithm 3 Capacity backtracking allocation strategy.

function allocateBC(t, V ) begin
allocateCNP(t, V )
if allocation not successful then

if reallocation counter is reached then
allocation not successful
return

end
forall v : V begin

find winner with the lowest insertion
estimation of t ignoring capacity constrain

end
while winner has not enough capacity for t begin

remove the worst task of winner
and put it to REALOC

end
assign t to the winner
forall r : REALOC begin

allocateBC(r,V )
end

end
end
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Algorithm 4 Improvement strategies of Allocation Agent.

function improveDW(v,V ) begin
t = the worst task of agent v
forall a : V � v begin

find winner with the lowest ins. estimation of t
end
if ins. cost of winner is lower then savings of v then

swap t from v to winner
end

end

function improveDA(v,V ) begin
forall t : tasks of agent v begin

forall a : V � v begin
find winner with the lowest ins. estimation of t

end
if ins. cost of winner is lower then savings of v then

swap t from v to winner
end

end
end

function improveRA(v,V ) begin
forall t : tasks of agent v begin

remove t from agent v
allocateCNP(t,V )

end
end

OestR, Oworst, Oins, and Orem are complexities of Vehicle
Agent algorithms for task insertion/removal estimation, task
insertion, finding the worst task, and task removal defined
in the next section.

2.4 Vehicle Agent
The Vehicle Agent represents a single truck and is respon-

sible for optimization of the route cost through the assigned
tasks. It starts and finishes the route at the depot. In fact,
this routing problem corresponds to the traveling salesman
problem, where new customers come successively (as the Al-
location Agent progress with task allocation).

Let N = (n1, . . . , nl) be a set of l tasks allocated to the
agent, I = (i : 1, . . . , l) is an ordered index set, where I ∈
I, |I| = l and I is a set of all index permutations.

According to Definition 1 the objective function of Vehicle
Agent can be formalized as follows:

argmin
I∈I

d(nd, nI1) +

l−1X
j=1

d(nIj , nIj+1) + d(nIl , nd), (7)

where d(ni, nj) is a distance traveled between task i and j,
and nd is the depot, ensured that Equation 2 holds.

Given the I minimizing Equation 7, the cost function of
the Vehicle Agent is then

cost(N) = d(nd, nI1) +

l−1X
j=1

d(nIj , nIj+1) + d(nIl , nd). (8)

The Vehicle Agent is able to compute the cost function
during interactions with the Allocation Agent in the case of
addition of new tasks, removal of an already assigned task,
and estimation of adding/removing a task.

OCNP m × OestI + Oins

OBC rc × (OCNP + m × OestI + n × Orem + Oins)

ODW Oworst + (m − 1) × OestI + Oins + Orem

ODA n × OestR + (m − 1) × OestI + Oins + Orem

ORA Orem + m × OCNP

Table 1: Complexity of Allocation Agent strategies.

The algorithm used by Vehicle Agent is based on the well-
known cheapest-insertion heuristics [8]. When inserting new
tasks nl+1 the algorithm searches (in case of satisfying Equa-
tion 2) for the best suitable index j, where

argmin
j∈I′

d(nI′
j−1

, nl+1) + d(nm+1, nI′
j
) − d(nI′

j−1
, nI′

j
), (9)

and I ′ = (d) ∪ I ∪ (d). The inner part of the Equation 9
is the insertion cost estimation. The new task nl+1 is then
inserted on the position k = j − 1 in the agent’s plan, e.g.:

I := (i1, . . . , ik−1, l + 1, ik, . . . , il),

N := N ∪ nl+1,

m := l + 1.

The same heuristics is used for identification of the worst
task (invoked by the delegation strategy of Allocation Agent),
so the worst task nj is such a task where:

argmax
j∈I′

d(nI′
j−1

, nI′
j
)+d(nI′

j
, nI′

j+1
)−d(nI′

j−1
, nI′

j+1
), (10)

i.e. the savings (the right part of the equation) of removing
such tasks are maximized.

In the dynamic variant of the VRP, the algorithm is sim-
ply modified by constructing I ′ = (c)∪(ip, . . . , il)∪(d) where
nc is the current position of the agent and nip is the next task
to be serviced. The plan is not searched from the beginning
but from the current point of execution – new task cannot
be inserted to the already traveled path (ni1 , . . . nil−1). This
modification has minimal impact on the functionality or the
source codes of the whole system. The Vehicle Agent is also
able to easily cover modifications of VRP such as the multi-
depot variation, heterogenous capacities, additional route
constraints, etc.

The complexity of insertion heuristics for inserting the ith

task is Oins = O(i), so the overall complexity of the plan-

ning l tasks allocated to an agent is O( l2

2
). The complexity

of finding the worst task is the same as planning a task and
insertion estimation, thus Oworst = OestI = O(i), removing
one task costs only one operation as does removal estima-
tion, thus Orem = OestR = O(1).

2.5 Complexity
The general computational complexity of the multi-agent

solver is introduced in [2]. Using transformation of the
multi-agent planning problem to the distributed constraint
satisfaction problem, the worst-case time complexity of the
multi-agent planning is upper-bounded by

f(I) × exp(comm) + exp(int), (11)

where f(·) is the factor inducted by requesting each agent to
plan while committing to a certain sequence of actions, I is
the complexity of an individual agent’s planning, exp(comm)
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represents a factor exponential in min-max number of per-
agent commitments, and an additive factor exp(int) repre-
sents the interactions of agents.

The consequences of Equation 11 lead to interesting fea-
tures of the multi-agent solver, such as (i) no direct expo-
nential dependence on the number of agents, (ii) no direct
exponential dependence on the size of the planning prob-
lem or size of the joint plan, and (iii) no direct exponential
dependence on the length of individual agent plans [2].

In our case the feature (ii) does not have a strong impact
on the BPP part of the problem because in the worst case
the size of the problem of our agents is the same as the size
of the overall problem (for the MTSP part of the problem
the feature holds). On the other hand the exponential fac-
tors are reduced by the polynomial heuristics – allocation
and improvement strategies of the Allocation Agent and the
insertion heuristic of the Vehicle Agent. The ordering strat-
egy of the Task Agent does not have a strong influence on
the worst case complexity because of its additive nature and
low complexity.

By combining complexities of the individual agent strate-
gies described earlier, we can define the complexity of the
overall solver. Because of the space limitations of the article,
we are not able to describe the complexity of every combi-
nation of strategies, so we present only the results here. The
upper-bound of the worst-case time complexity of the solver
is (taking into account the worst-case number of restarts,
reallocations and backtracking)

O(n3), (12)

where n is the number of tasks (i.e. nodes or demands).
There is no influence of the number of agents, but the num-
ber of Vehicle Agents is reflected by its dependency on the
number of tasks (see Theorem 1) and increase the worst-case
complexity exponent by one because of restarts towards the
upper-bound number of vehicles.

2.6 Experiment Baseline Solver
For the evaluation purposes we have created a baseline

solver reconstructing the optimal (or the best known) so-
lution. It is based on the known results of the benchmark
instances. It is composed of the presented three types of
agents with special strategies. For the Task Agent it is:

• Optimal order, where tasks are ordered in an optimal
way. This strategy is based on the previously known
optimal solution. The order of the tasks is given by
merging optimal routes, where tasks are ordered by
their distance from the depot to the corresponding city
computed on the vehicle route.

The Allocation Agent algorithm is composed only of the
following allocation strategy (no optimization strategy is
needed):

• Optimal allocation, where tasks are allocated to the
Vehicle Agents according to routes in the known opti-
mal solution.

The Vehicle Agent optimal strategy is bounded to the opti-
mal allocation (it is obvious that with non-optimal alloca-
tion, the Vehicle Agent strategy is not able to produce the
globally optimal solution). So the optimal Vehicle Agent
strategy is:

• Optimal route, where tasks are ordered in the same
way as in the known optimal solution.

This baseline solver is used for comparison in the experi-
ments as a whole (reconstructing the best known solution)
or as a part of the standard solver for investigating influences
of the individual agents.

3. EXPERIMENTS
The presented solver has been evaluated on the VRP bench-

mark instances from two sources. The first source is VR-
PLIB1 (s̈ymetric CVRP instances)̈, and the second is a com-
pilation of instances from the COIN-OR project2. All the
instances use the Euclidean distance for edge weights and the
number of nodes varies from 16 to 484. We have used 115
instances with a known solution (optimal or best known).

The comparison of solutions has been made against solu-
tions reconstructed by the baseline solver (see Section 2.6).
We measure the computation time and quality of the solu-
tion defined as:

costsolver

costoptim
× 100[%], (13)

where costsolver is the solution cost provided by the solver
(see Equation 4) and costoptim is the cost of the best known
solution. All the experiments have been run on a standard
laptop with 3GB of RAM and 2.5GHz dual core processor.
The solver has been implemented as JAVA application with
no performance optimizations.

3.1 Solution Quality
The quality of the solution has been evaluated for the

composite solver (using 42 parallel solvers with combination
of strategies as described in Section 2). The aggregated re-
sults of all experiments show that the best solution quality
reached is 100%, the lowest quality is 81.3% and the average
solution quality over all instances is 91.3%. The results per
instance (the x-axis represents instances with an increasing
number of nodes to the right) can be seen in Figure 2 –
the dots are the best solutions of the composite solver, the
vertical lines represent the span of results of other solvers
(e.g. non-winning strategies combinations). The results of
the experiment also indicate that there is no dependence of
the solution quality on tightness of the instance. The com-
posite solver has reached the solution quality of more than
81% on all the benchmark instances and the average quality
has been 91%. The quality of 100% has been reached for
3 instances, for 28 instances we reached quality better than
95% and there have been 63 instances with solution better
than 90%.

3.2 Ordering Strategy
These experiments evaluate the influence of the Task Agent

ordering strategy on the quality of the solution provided by
the solver. The strategies of Task Agent are compared to
the baseline Optimal Order strategy. Table 2 shows the so-
lution quality of the solver through all instances aggregated
for ordering strategies (solvers are divided into the groups
according to the ordering strategy used and the best solution

1http://www.or.deis.unibo.it
page /research pages/ORinstances/VRPLIB/VRPLIB.html
2http://www.coin-or.org
page /SYMPHONY/branchandcut/VRP/data/
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Figure 2: Solution quality of the composite solver
per each benchmark instance.

Task Processing max min average deviation

MDF 100.0 75.83 87.62 6.30
LDF 99.1 68.46 87.06 7.39
FIFO 100.0 75.87 88.45 5.87

Optimal Ordering 100.0 69.8 88.84 6.39

Table 2: A comparison of the task processing meth-
ods. The values are the best results in form of solu-
tion quality.

is used for each instance and ordering). The best solution
for all ordering strategies reaches 100% of solution quality
and the average quality is almost the same for all evaluated
ordering strategies. The worst performance provides LDF
(also the biggest deviation of results). It seems to be prov-
ably worse than MDF, which looks like potential support of
Hypothesis 2 and good influence of FFD heuristics for BPP.
Unfortunately, the FIFO strategy provides a similar statis-
tical performance as MDF. Moreover, the Optimal Ordering
does not show big difference of the solution quality, so we
can state that Hypothesis 2 is refused. We have found
no strong influence of the selection of the ordering strategy
on efficiency of the solver, we have not even found influence
of usage of the FFD heuristic to the solution quality.

3.3 Insertion Heuristic
This experiment demonstrates the error of the Vehicle

Agent insertion heuristic. The solution of a baseline solver is
compared to the solution of the solver with the baseline Task
Agent and Allocation Agent (i.e. optimal Order and opti-
mal Allocation) and the optimal number of regular Vehicle
Agents.

The maximum reached solution quality for this solver set-
ting has been 100%, minimum 80% and the average quality
has been 95%. The average error of the insertion heuristics
computed for each Vehicle Agent route’s individually has
been 0.8%, the maximal single route error has been 9%.

3.4 Strategies Composition
This experiment evaluates the efficiency of Allocation Agent

strategies combined with a different task processing strat-
egy of Task Agent. The effectiveness of the used strategies
can be expressed as an aggregation of the ranks across the
benchmark instances and solvers (see Figure 3).

The strategies utilized by the solver are expressed us-
ing their abbreviations as defined in Section 2 in the form:

Figure 3: A histogram showing which task process-
ing, allocation, and optimization strategies are more
effective in all instances.

task processing strategy – allocation strategy – improvement
strategy. If no improvement strategy is used, it is denoted as
NA. We have run the solvers for all task ordering strategies
and selected the best results to eliminate the influence of the
task ordering strategy. The histogram in Figure 3 shows the
ITER-CNP-DA together with ITER-CNP-RA are in 78% of the
instances ranked as the best generic solvers. On the other
hand, the worst strategies are NORM-BC-NA and NORM-CNP-NA

which are ranked as last and one before last in 86% and 85%
of the instances. Strategies NORM-CNP-DW, NORM-BC-DW, and
ITER-BC-DW also show considerably bad effectiveness. These
occupy ranks from 10–12 (out of 14) of the chart in 66% of
instances.

3.5 Computation Time
This experiment focuses of the computation time of the

composite solver. Figure 4 shows the average computation
time of all combinations of strategies and orderings on the
benchmark instances. During the time, the composite solver
provides the solution presented in Figure 2. The x-axis rep-
resents the number of nodes in the instance. The y-axis
represents the processing time of the composite solver (the
aggregated time of 42 solvers for each instance). For all in-
stances, the first solution (from one of the 42 solvers) has
been obtained in a few milliseconds (11 milliseconds for the
largest instance with 484 nodes) and the longest processing
time of a single solver is close to 10 seconds (again for the
instance with 484 nodes). The lowest processing time of the
composite solver has been 6 milliseconds (P-n16-k8 ) and the
longest time has been 49 seconds (E484-19k). The computa-
tion time of the solver in the experiments is upper-bounded

by n3

1500
, which is better than the worst case complexity de-

noted by Equation 12.

3.6 Number of Vehicle Agents – Optimization
In this experiment we investigate the influence of the ini-

tial setting of the number of Vehicle Agents. We have com-
pared two settings – the lower-bound and upper-bound.

Thanks to improvement strategies the solution provided
by the solver starting with a lower-bound number of Vehicle
Agents (L-B) and the solver with an upper-bound number of
Vehicle Agents (U-B) is the same. On all instances the solu-
tion of U-B solver converged to the exactly the same solution
as L-B solver. The only difference was the instance A-n62-
k8, where the U-B solver provides the solution of quality
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Figure 4: Computation time (aggregated) of the al-
gorithm for all instances.

Number of vehicles max min average deviation

Unlimited 100.0 81.82 92.22 4.95
Minimal 100.0 76.95 91.0 5.64

Table 3: A comparison of solution quality of the best
solutions by the numbers of vehicles.

0.88%, but the L-B solver stuck on 0.86% (both produce the
solution using 8 vehicles, which is the optimal value). The
computation time of the U-B solver was 2 times longer than
L-B solver on average, in the worst case it was 5.4 times
longer and in the best case 1.6 times faster (it was slightly
faster in 6% of all cases). In the case of the U-B solver,
the allocation and improvement strategies reduce the num-
ber of used Vehicles Agents and the solution converge to the
solution of L-B solver. This experiment demonstrates the
emergent self-organization ability of the agent-based system
and strongly supports Hypothesis 1.

3.7 Number of Vehicle Agents – Constraint
This experiment focuses on the constrained number of

vehicles. The solution obtained by the composite solver
doesn’t always meet the potential constraint for a minimal
number of vehicles used (the BPP part of the VRP). A solu-
tion using the minimal number of vehicles has been produced
by the solver for 92 instances. Table 3 shows the difference
between the best solutions produced by the composite solver
constrained by the minimal number of vehicles (given by the
known optimal solution) and the solution with an unlimited
number of vehicles. In the constrained case, some of the
solvers do not provide the solution and thus the composite
solver provides worse result. For three particular instances
(E421-41k, P-n55-k8, P-n55-k15 ), the solution with an op-
timal number of vehicles could not be found using any com-
bination of solver strategies (those three are not included in
the computation of values for the case with minimal number
of vehicles in Table 3).

4. CONCLUSIONS
We have designed and evaluated a multi-agent VRP solver

that provides a feasible solution in polynomial time. The
quality of the solution has been over 81% of all benchmark
instances that greatly outperforms the known lower-bound
approximation. The time complexity of the solver on exper-
imental instances has been upper-bounded by O(n3). We
have defined the bounds for the Vehicle Agents and shown

that thanks to self-organization principles the presented agent-
based solver converges to the same solution when starting
from the lower bound and upper bound number of vehicles.

The presented solver architecture supports great runtime
parallelization and it is able to provide the first solution in
a very short time with good solution quality (for the biggest
instance the first solution is produced under 10 milliseconds
with 50% solution quality).

The results show that iterative task processing provides
better results than batch processing and the backtracking
strategy is not very efficient. The best performance has
been reached with iterative task processing and ordinary
CNP allocation with Delegate All and Reallocate All im-
provement strategies. The possible extension of the solver
would be to introduce more improvement strategies and the
mechanism of their runtime combination but in exchange of
the computation time (and also worst-case complexity) in-
crease. Another extension should be randomization of the
task ordering strategies.

The presented solver demonstrates very good applicabil-
ity to the VRP problem and easy adaptation to problem
variants. Generalization of this approach to other problems
(e.g. multiple traveling repairman problem and its variants)
seems to be a promising way of future research.
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[4] G. Dósa. The tight bound of first fit decreasing
bin-packing algorithm is ffd(i) <= 11/9opt(i) + 6/9.
In ESCAPE, pages 1–11, 2007.

[5] M. Haimovich, R. Kan, and L. Stougie. Vehicle
routing : methods and studies, chapter Analysis Of
Heuristics For Vehicle Routing Problems, pages 47–61.
Elsevier, Amsterdam, 1988.

[6] G. Laporte, M. Gendreau, and J.-Y. Potvin. Classical
and modern heuristics for the vehicle routing problem.
Technical report, GERAD, 1999.

[7] Y. Marinakis and A. Migdalas. Annotated
bibliography in vehicle routing. Operational Research,
7(1):27–46, January 2007.

[8] D. J. Rosenkrantz, R. E. Stearns, and P. M. L. II. An
analysis of several heuristics for the traveling salesman
problem. SIAM J. Comput., 6(3):563–581, 1977.

[9] P. Toth and D. Vigo. The Vehicle Routing Problem,
Monographs on Discrete Mathematics and
Applications. Society for Industrial and Applied
Mathematics, U.S., 2001.

[10] B. Zeddini, M. Temani, A. Yassine, and K. Ghedira.
An agent-oriented approach for the dynamic vehicle
routing problem. International Workshop on Advanced
Information Systems for Enterprises, 0:70–76, 2008.

780


